9[™] ANNUAL DIGESTIVE DISEASES: NEW ADVANCES

September 16–17, 2022 W Hotel Philadelphia, PA

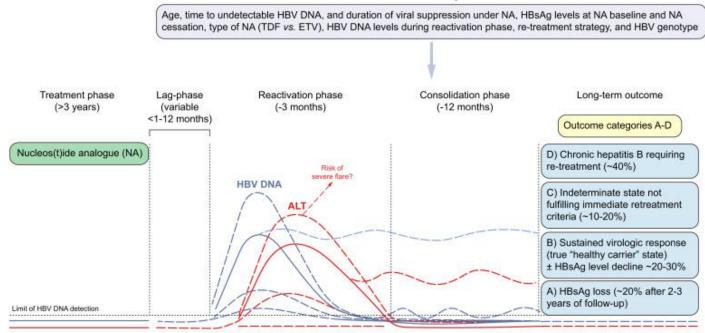
Accredited by:

ANNENBERG CENTER FOR HEALTH SCIENCES AT EISENHOWER Imparting knowledge. Improving patient care.

This activity is supported by educational grants from AbbVie, Alexion Pharmaceuticals, Inc., Cook Medical, and Salix Pharmaceuticals.

Hepatitis B Cure New Drugs, Novel Strategies

Jordan J. Feld, MD, MPH Toronto Centre for Liver Disease Sandra Rotman Centre for Global Health University of Toronto

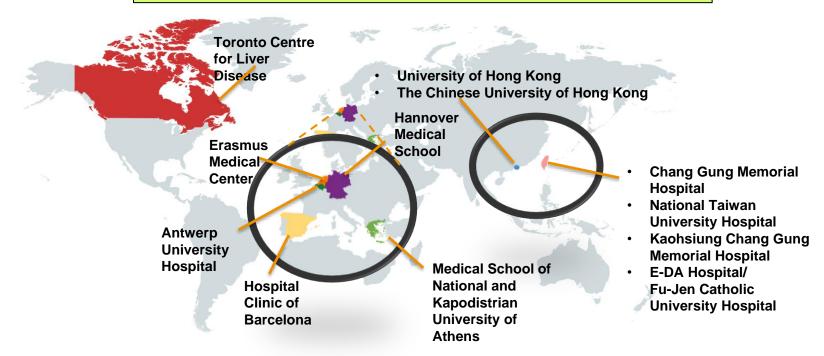


- Jordan J. Feld MD, MPH
 - Consulting: AbbVie, GlaxoSmithKline, Janssen,
 Roche, Eiger, Enanta, Antios, Arbutus, and Bluejay
 - Research: AbbVie, Gilead, GlaxoSmithKline, Janssen, Roche, Eiger, and Enanta

Outline

- Stopping Nucs
- New Treatment for HBV & HDV
 - Virological targets
 - Immunological targets
 - Combinations

Increasing Interest in Stopping Nucs

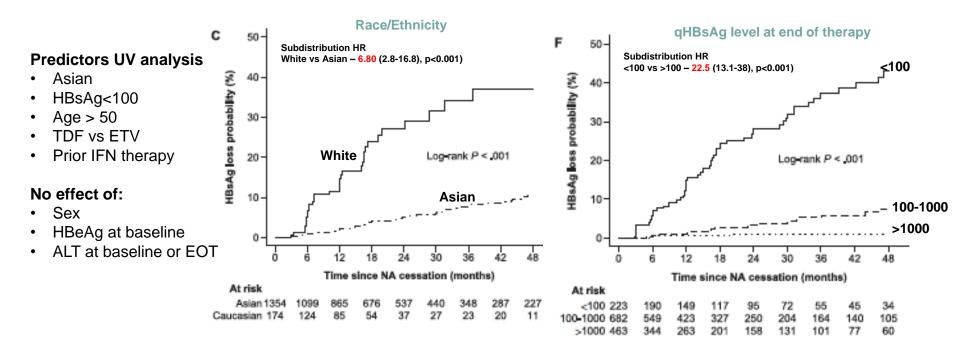

Potential outcome predictors

Lampertico & Berg. Hepatology. 2018.

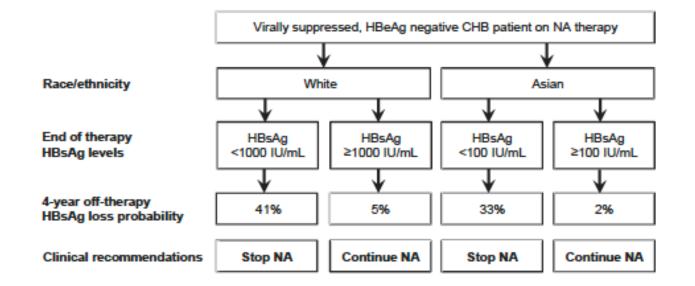
Time

RETRACT-B

International collaborative effort to outcomes of NA withdrawal

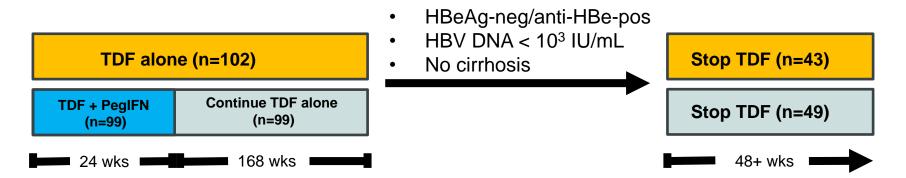


Hirode. Gastro. 2022.


Large International Cohort – NA Withdrawal

Baseline demographics	n (%), unless stated	40- 1-year 3%
Total (N)	1541	
Age at baseline, years, mean ±SD	53 ± 11	3 3 3 3 3 3 9 3 3 9 3 3 3 3 3 3 3 3 3 3
Male	1117 (73)	
Race: Asian/White/other	1359 (88) / 152 (10)/ 30 (2)	· 또 10-
HBV genotype: A/B/C/D	7 (0.5)/ 669 (43)/ 172 (11)/ 23 (2)	0- 0 6 12 18 24 30 36 42 48 At risk (n): Month
NUC type prior to cessation: ETV/TDF/other	927 (60)/ 443 (29)/ 171 (11)	¹³⁶⁶ 1080 839 641 509 402 309 246 178 ¹⁰⁰ Cumulative retreatment rates:
NUC duration, years, median (IQR)	3.0 (2.8–3.8)	80- 1-year 30%
At baseline (time of NA cessation)		€ 2-year 43% € 60- 3-year 50%
Cirrhosis	70 (5)	9 4-year 56%
HBsAg, Log ₁₀ IU/mL, mean ± SD	2.6 ± 0.8	
ALT x ULN, median (IQR)	0.6 (0.4–0.8)	
Hirode. Gastro. 2022.		- 0-1 0 6 12 18 24 30 36 42 48 At risk (n): Month 1366 1080 839 641 509 402 309 246 178

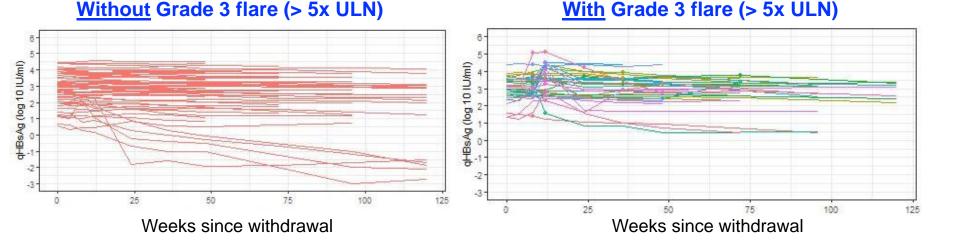
Predictors of HBsAg loss


Practical Approach

Different HBsAg thresholds for withdrawal: White 1000 IU/mL Asian 100 IU/mL

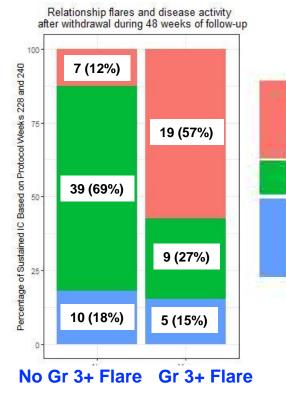
Are Post-Withdrawal Flares Beneficial?

NIH-Sponsored Hepatitis B Research Network (HBRN) Prospective evaluation of NA withdrawal after 4 years of therapy


- HBsAg decline/loss
- Outcomes: ALT elevations (Grade 1 1-2x ULN, 2 2-5x ULN, 3 5-10x ULN, 4 >10x ULN)
- Active disease at end of f/u (ALT > 2x ULN with HBV DNA > 10⁵ IU/mL

Withdrawal Population

Variable	TDF alone (n=43)	TDF + PegIFN (n=49)	gIFN P- value variation	TDF alone (n=43)	TDF + PegIFN (n=49)	P- value	
	n (%)/ med (IQR)	n (%)/ med (IQR)			n (%)/ med (IQR)	n (%)/ med (IQR)	
Male Sex, n (%)	30 (69.8)	32 (65.3)	0.67	At study entry			
Age (study entry), yrs	45.9 (39-56)	43.4 (37-53)	0.16	HBeAg-positive	8 (18.6)	13 (26.5)	0.46
Race, n (%)	n=42	n=49	0.92	HBV DNA (log IU/mL)	5.6 (4.9:6.4)	57 (4.5:6.6)	0.82
Asian	34 (81.0)	41 (83.7)	0.01	qHBsAg (log IU/mL)	3.2 (2.9:4.0)	3.1 (2.8:3.9)	0.24
White	3 (7.1)	4 (8.2)		qHBsAg<100	0	2 (4.1)	0.50
Black	5 (11.9)	4 (8.2)		ALT x ULN	2.7 (1.9:5.1)	2.9(1.9:4.3)	0.83
HBV genotype	0 (1110)	. (0.2)	0.32	At Withdrawal (Wk 192)			
A1	4 (9.3)	3 (6.1)		HBeAg-positive* / anti-	0 / 38 (92.7)	0 / 46 (95.8)	0.79
A2	3 (7.0)	2 (4.1)		HBe-positive	0,00(02.1.)	. ,	
В	19 (44.2)	24 (49.0)		HBV DNA (loa lU/mL)	0.7 (0.0:1.0)	0.9 (0.6:1.1)	0.07
C	9 (20.9)	17 (34.7)		qHBsAg (log IU/mL)	3.2 (2.6:3.6)	2.7 (2.0:3.3)	0.08
D	5 (12)	1 (2)		aHBsAa<100	4 (9.3)	14 (28.6)	0.035
E	3 (7)	2 (4)		ALT x ULN	1.1 (0.8:1.5)	1.0 (0.8:1.3)	0.29


Did ALT Flares Lead to HBsAg Decline?

Trajectory of qHBsAg after TDF withdrawal by ALT flare (5x ULN)

Greater HBsAg decline seen in those *without* ALT flares

Do Flares Predict Future Disease Activity?

Sustained phenotype (≥ 2 visits) at end of follow-up

Active:

HBV DNA > 2,000 IU/mL and ALT > 2x ULN or started treatment

Indeterminant

Inactive Carrier or Immune Control: HBV DNA < 1,000 IU/mL and ALT < 1x ULN or lost HBsAg

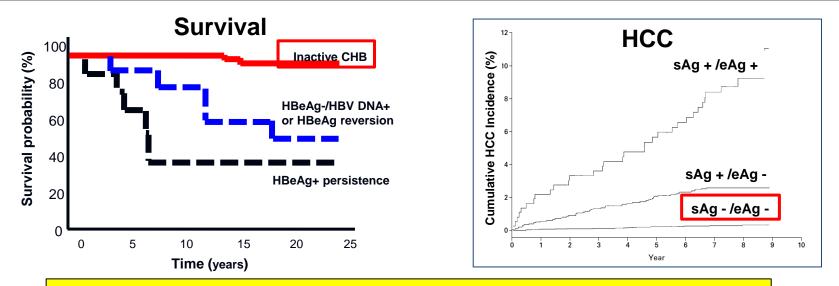
Factors Associated With ALT Flares (>5x ULN)

- Baseline
 - Age OR 1.05 (95% CI 1.01-1.09)
 - HBV DNA (log) OR 1.50 (1.12-2.01)
- At end of treatment
 - No factors!
 - ALT, DNA, HBsAg not predictive!

• At flare visit

- HBV DNA OR 2.79 (2.23-3.49)
- **qHBsAg** OR 9.58 (2.36-38.9)
- At visit prior to flare
 - HBV DNA OR 3.02 (2.28-4.02)
 - HBV DNA > 4 log OR 29.9 (12.3-72.3)

ALT flares can be predicted...and prevented


Conclusions on nuc Withdrawal

- HBsAg loss/sustained inactive disease after NA withdrawal infrequent in Asians
- ALT flares not required for HBsAg loss/decline...questions concept of 'therapeutic flare'
- High HBV DNA (>4 log IU/mL) predicts flare \rightarrow trigger to restart Nuc
- Bad outcomes if cirrhosis, HBeAg+ or even anti-HBeAg-neg

If you consider this \rightarrow key considerations:

- 1. Non-cirrhotic, HBeAg-neg/anti-HBe-pos
- 2. Reliable follow-up!
- 3. Asians: qHbsAg<100, White qHbsAg<1000
- 4. Follow closely if HBV DNA > 4log restart don't wait for the flare

What Are the Goals of New HBV Therapy? Learning From Natural History

- Very inactive disease and ideally HBsAg loss associated with excellent long-term and cancer-free survival
- A good goal for therapy

Fattocvich. Gut. 2008; Yang. NEJM. 2002.

Goals of Therapy

Cure the infection

- True cure = all traces of HBV gone from the liver (ie. like HCV)
- − This is **VERY** difficult (if not impossible) \rightarrow cccDNA + integrated HBV DNA

Functional cure

- Use the markers of excellent natural history...
- 1. HBsAg loss (ideally with anti-HBs)
- Possibly...sustained off treatment inactive disease without HBsAg loss (HBeAg –ve, DNA undetectable, normal ALT, normal histology) (some call this 'partial cure')

Is There Consensus?

88% of attendees at EASL/ASSLD HBV Endpoints conference chose Functional Cure as the preferred goal for future therapies

Sustained Virological Response (sAg +ve, DNA negative, off therapy) An advance but not enough of one

Functional Cure (sAg loss with undetectable DNA & Normal ALT) Challenging but achievable goal

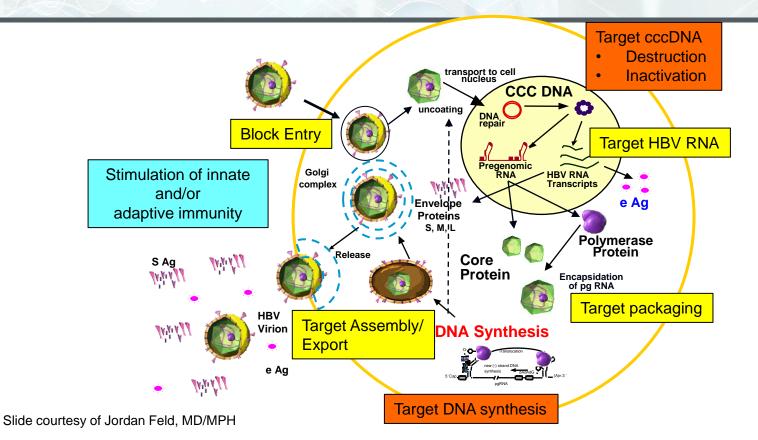
Sterilizing cure (cccDNA loss) Too hard to achieve

Is There Consensus Changing?

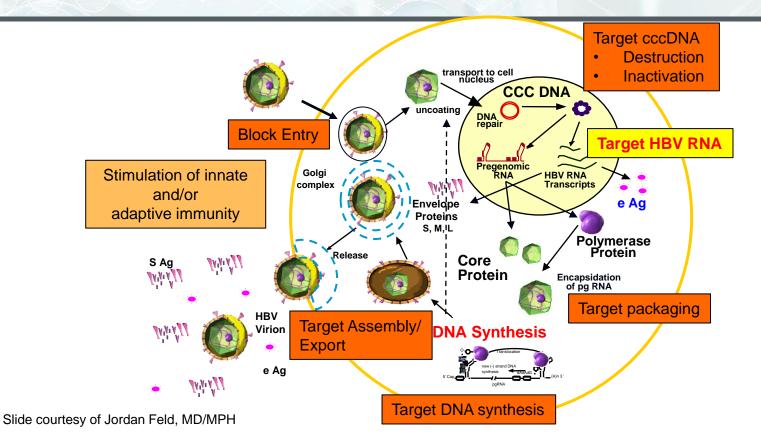
88% attractes at EASL/ASS 3V Endpoints conference use Functional Cure as the contract goal for fut of the pies

Sustained Virological Response (sAg +ve, DNA negative, off therapy) An advance but not enough of one

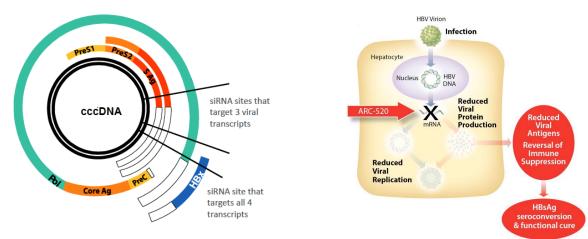
Functional Cure (sAg loss with undetectable DNA & Normal ALT) Challenging but achievable goal


Sterilizing cure (cccDNA loss) Too hard to achieve

Partial cure endorsed by many


- HBsAg + but low level
 - <100? <10?
- HBV DNA low vs undetectable
- PHBV RNA or HBcrAg negative?

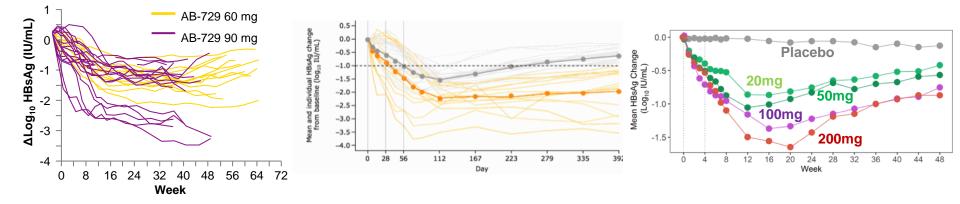
EASL/AASLD Endpoints Meeting Take 3 – 2022.


Potential Targets in the Lifecycle

Potential Targets in the Lifecycle

Target RNA – siRNA

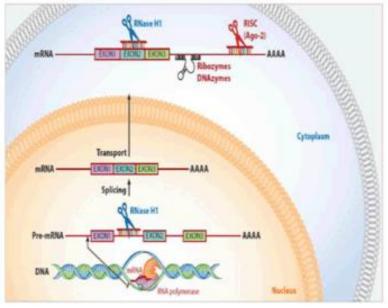
- Overlapping reading frames = conserved regions
- siRNA targeting can eliminate *all* HBV gene products
 - Antigen reduction (sAg, pol, core) \rightarrow restore immune function
 - pgRNA \rightarrow block replication

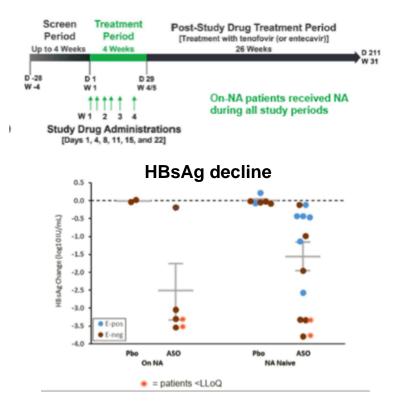

Woodell. Mol Ther. 2013.

RNA Inhibitor – siRNA

AB-729 (60/90 mg) + Nuc

JNJ-3989 (ARO-HBV) + Nuc

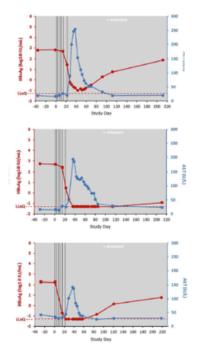


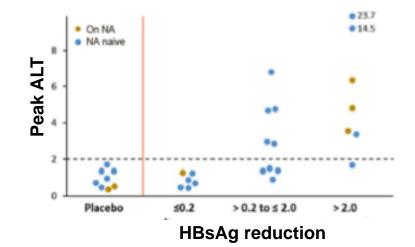

- Fairly consistent results initial decline → plateau why?
- Off-treatment sustained response ~40% what does this mean? Immune control?
- Infrequent dosing, minimal toxicity & resistance

Gane et al. EASL. 2020; MF Yuen. AASLD. 2021; MF Yuen. AASLD. 2021.

Antisense Oligonucleotide – GSK 836

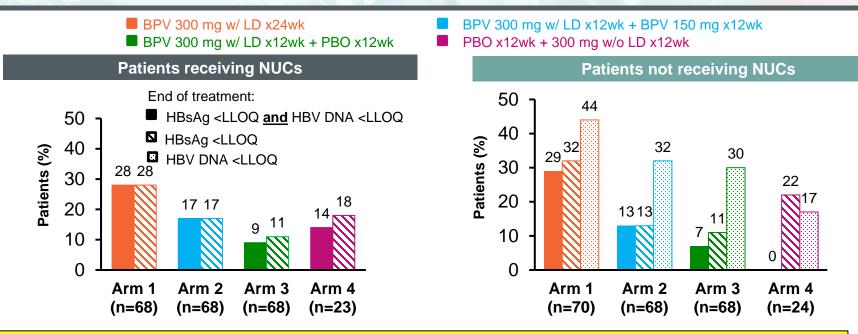
- Similar concept to RNAi
- ASO binds HBV RNA species and degraded by RNase H rather than Ago




MF Yuen. Nat Med. 2021.

RNAi – Antisense Oligonucleotide

Nuc suppressed patients



MF Yuen. Nat Med. 2021.

- ALT flare with HBsAg decline similar with and without NA
- Marked HBsAg decline in NA-suppressed
- Non-GalNac targeting more effective! Possibly TLR8 related...
- Are these immune restoration, toxicity or something else entirely?

B-Clear: Phase 2 of ASO (Bepirovirsen) +/- NA Patients With HBsAg <LLOQ and/or HBV DNA <LLOQ at End of Treatment

- Most effective with lower HBsAg levels ~30% HBsAg loss with 24 weeks of therapy!
- Moving to Phase 3 in HBeAg-negative patients on NA 300 mg x 24 weeks simple trial

RNAi

Antisense Oligonucleotide

Mechanism

mRNA processing – RISC • RNase H complex

RNAi

Mechanism Targeting

- mRNA processing RISC
- GalNac Hepatocytes

- RNase H complex
- No GalNac other cell types

RNAi

Mechanism Targeting Dosing

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)

- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)

RNAi

- Mechanism Targeting
- Dosing
- cccDNA vs Int

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)
- Appears similar (?)

- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)
- Unknown

RNAi

- Mechanism
- Targeting
- Dosing
- cccDNA vs Int
- Effect

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)
- Appears similar (?)
- HBsAg decline all → plateau

- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)
- Unknown
- Potent HBsAg decline in some

RNAi

- Mechanism
- Targeting
- Dosing
- cccDNA vs Int
- Effect
- **ALT Flares**

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)
- Appears similar (?)
- HBsAg decline all → plateau
- Uncommon

- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)
- Unknown
- Potent HBsAg decline in some
- Common correlate HBsAg

RNAi

- Mechanism
- Targeting
- Dosing
- cccDNA vs Int
- Effect
- **ALT Flares**
- Off treatment

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)
- Appears similar (?)
- HBsAg decline all → plateau
- Uncommon
- 40% sustained reduced HBsAg

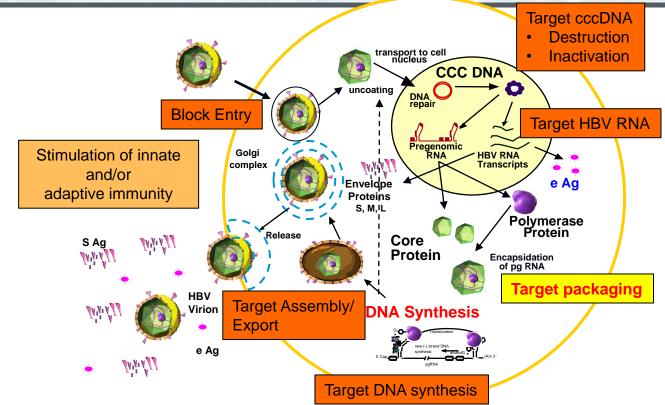
- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)
- Unknown
- Potent HBsAg decline in some
- Common correlate HBsAg
- Prolonged effect in some

RNAi

- Mechanism
- Targeting
- Dosing
- cccDNA vs Int
- Effect
- **ALT Flares**
- **Off treatment**
- Immune restor'n

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)
- Appears similar (?)
- HBsAg decline all → plateau
- Uncommon
- 40% sustained reduced HBsAg
- Unknown

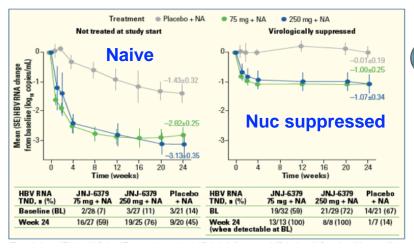
- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)
- Unknown
- Potent HBsAg decline in some
- Common correlate HBsAg
- Prolonged effect in some
- Unknown


RNAi

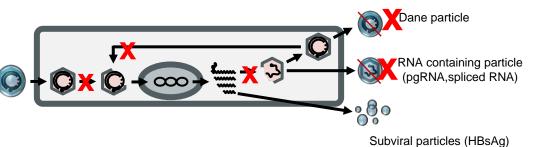
- Mechanism
- Targeting
- Dosing
- cccDNA vs Int
- Effect
- **ALT Flares**
- **Off treatment**
- Immune restor'n
- HBsAg loss

- mRNA processing RISC
- GalNac Hepatocytes
- Infrequent (q4-8 weeks)
- Appears similar (?)
- HBsAg decline all → plateau
- Uncommon
 - 40% sustained reduced HBsAg
- Unknown
- Rare

- RNase H complex
- No GalNac other cell types
- Frequent (6 per month)
- Unknown
- Potent HBsAg decline in some
- Common correlate HBsAg
- Prolonged effect in some
- Unknown
- 30% in low HBsAg levels


Potential Targets in the Lifecycle

Slide courtesy of Jordan Feld, MD/MPH


Capsid Assembly Modulators (CAMs)

JNJ-6379 PO OD x 24 w in non-cirrhotic naïve/nuc-suppressed CHB

HBV RNA

- Minimal or no effect on HBeAg HBsAg levels
- Resistance risk if monotherapy

- Well tolerated
- Potent HBV DNA suppression with *limited dose* response at higher dose
- Higher dose may be required for disruption of formed capsids to prevent cccDNA replenishment
- Many others in development

Will Potent Suppression Allow for Stopping?

Residual

low-level

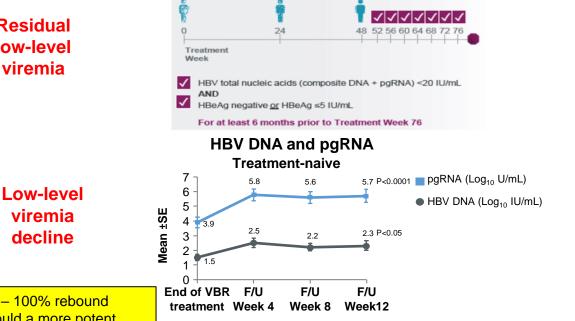
viremia

viremia

decline

Nuc monotherapy

Patient	Treatment Week								
Nue	М	0	2	- 4	8	12	16	20	24
1 TDF	=	-	-	-	-	-	-	-	-
2 TAF	-	-	-	-	-	-	-	-	-
3 TDF		-	-	-	-	-	-	-	-
4 TDF	F	-	-	·		-		-	-

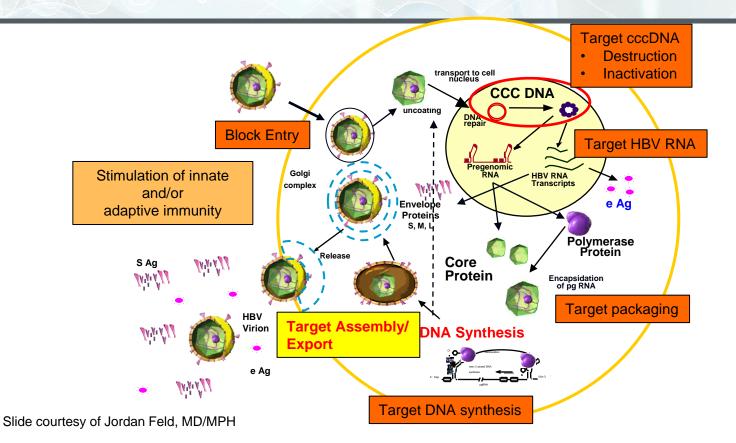

Addition of CAM

ET/

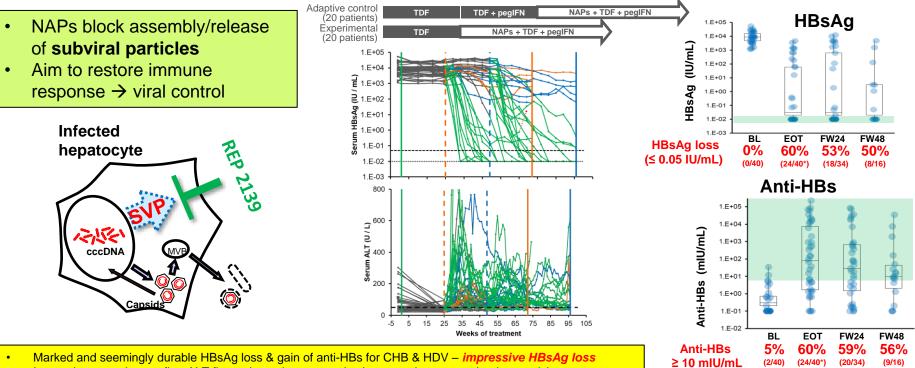
TAF

TD

Is this enough to let them stop?

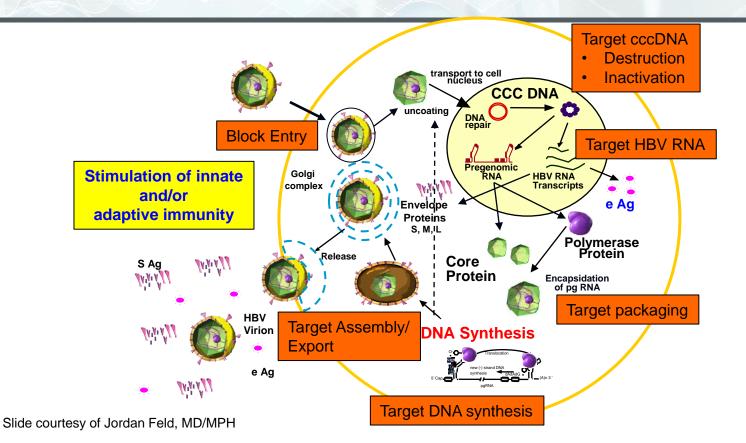


Unfortunately stopping was not effective – 100% rebound •


Would longer therapy have worked? Would a more potent • CAM be more effective?

Lalezari. EASL. 2019; Yuen MF. EASL. 2020; Fung. EASL. 2020; Yuen MF. AASLD. 2021.

Potential Targets in the Lifecycle


Nucleic Acid Polymers (NAPs) – Reducing HBsAg

Interesting...need to confirm ALT flares due to immune activation, new data on mechanism evolving

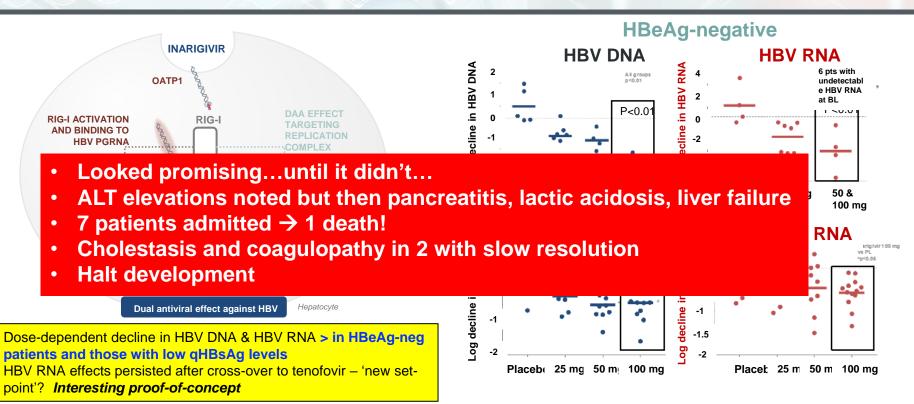
Bazinet. Gastro. 2020.

Potential Targets in the Lifecycle

Immunotherapies

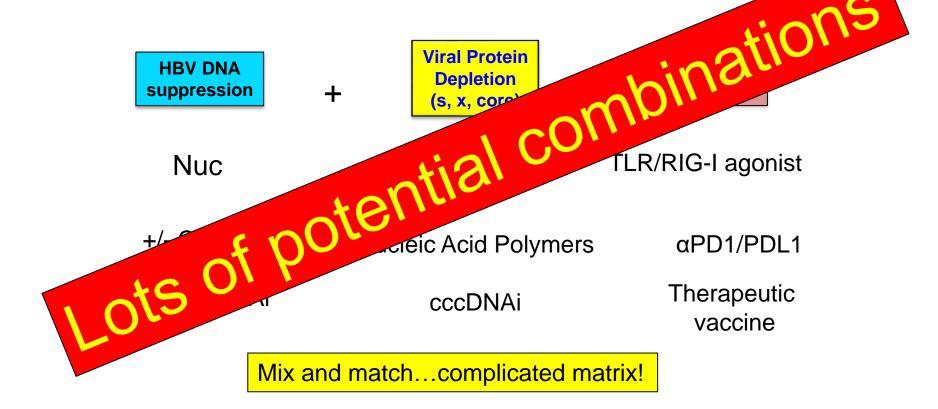
Innate

- Cytokine therapy
 - IFN
- TLR agonists
 - TLR7, TLR8
- RIG-I agonists


Adaptive

- Therapeutic vaccine
- Checkpoint inhibitors
 - PD-1
 - PD-L1

Immune restoration through inhibition of viral antigens


Attractive but a little bit stressful...flares can be good but flares can scary!

Inarigivir – A Novel Approach With Dual Antiviral Activity

Yuen et al. AASLD. 2018, Abstract 75; Agarwal. HBV Forum. 2020.

Attractive Combinations

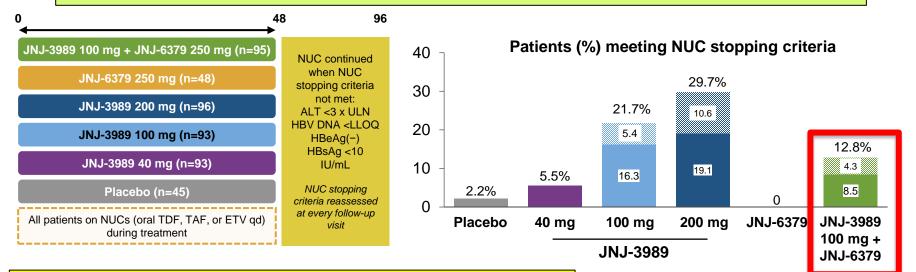
The First Combination

siRNA **Core Assembly Modulators** pre-S2 pre-S1 Dane particle RNA containing particle (pgRNA, spliced RNA) 000 Subviral particles (HBsAg) siRNA targeting an overlapping

2 mechanisms:

- 1. Block encapsidation decrease HBV DNA & RNA
- 2. Block cccDNA formation

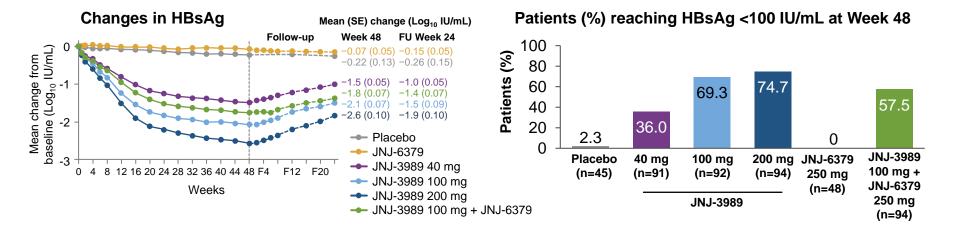
2 mechanisms


- 1. Block viral replication pgRNA
- 2. Block Ag production restore immunity

region can silence all transcripts

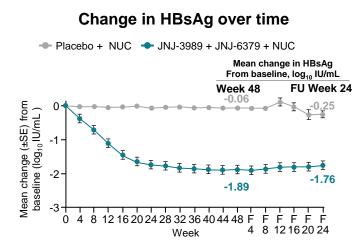
Slide courtesy of Jordan Feld, MD/MPH

REEF-1: siRNA + CAM


siRNA (3989) (40, 100 or 200) vs (6379) vs combination (siRNA + CAM) x 48 wks + 24 wks f/U Non-cirrhotic, nuc suppressed or naïve, HBsAg>100 IU/mL – stratified by HBeAg & treatment

- Surprisingly combo did worse!
- siRNA alone at 200 mg most effective...but still not the answer

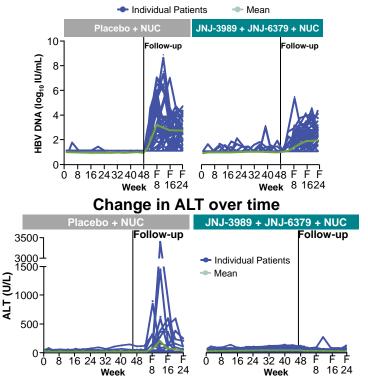
Yuen MF. AASLD. 2021.


HBsAg Results

- Initial rapid decline...with plateau after about 24 weeks why?
- A high proportion achieved HBsAg<100 but no HBsAg loss!
- CAM had no effect on HBsAg alone and ?inhibitory effect on siRNA why?

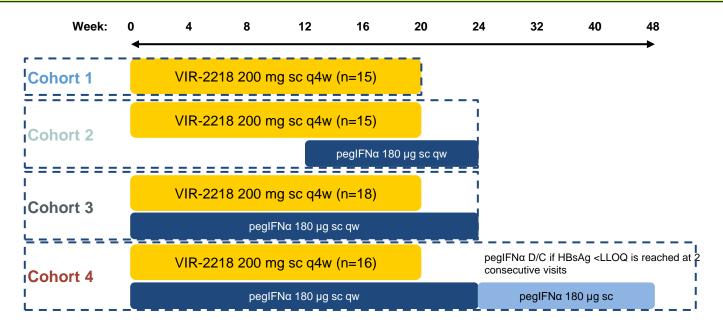
Yuen MF. AASLD. 2021.

REEF-2 – siRNA + CAM

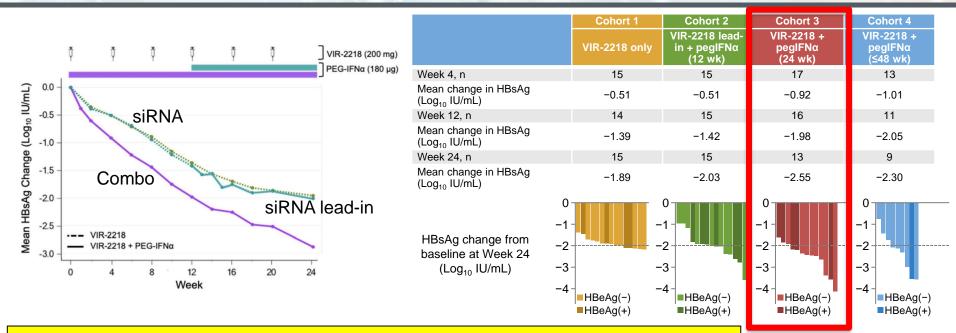


Change in HBsAg from Week 48 to F/U Week 24

- Despite no HBsAg loss stable off therapy response
- A bit disappointing...but maybe a new setpoint?
- Could still be useful


Agarwal K et al. EASL 2022. #GS010.

Change in HBV DNA over time

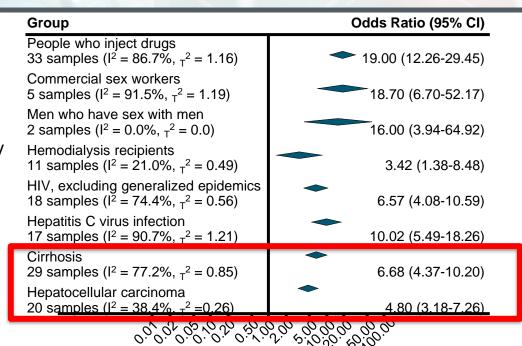

siRNA + PegIFN

siRNA (2218) alone or + PegIFN 180 mcg SC started together or after siRNA lead-in Non-cirrhotic, nuc suppressed, HBsAg>50 IU/mL

Yuen MF. AASLD. 2021.

siRNA + PegIFN

- 3 patients lost HBsAg (started low) and most below 100 IU/mL
- Combination better but no advantage to 'lead-in' with Ag reduction
- Perhaps not surprising...Ag reduction may be more important for adaptive immune response

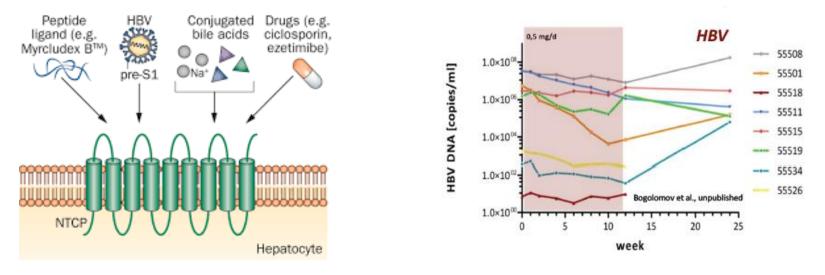

Yuen MF. AASLD. 2021.

It's Not Just Choosing the Right Target/Compound...

- Other MAJOR issues
 - 1. Correct population
 - Highest need?
 - Easiest to show an effect?
 - Immune tolerant/e+/e-/inactive/NA suppressed...
 - 2. Correct endpoint
 - Is sAg loss the same with an NA as with an siRNA?
 - Do we need to look in the liver? Do we need new biomarkers HBV RNA, HBV crAg others?
 - **3. Correct combinations**
 - Lots of possibilities a huge matrix!!
 - 4. Safety!
 - A major concern...especially with immunotherapies

HDV

- Worst form of viral hepatitis
- Decreasing global prevalence (HBV vaccination & mortality!)
- Population attributable fraction of HBsAg-positive patients suggested HDV accounted for:
 - 18% of cirrhosis
 - 20% of HCC
 - Over-represented among all bad outcomes and high risk populations

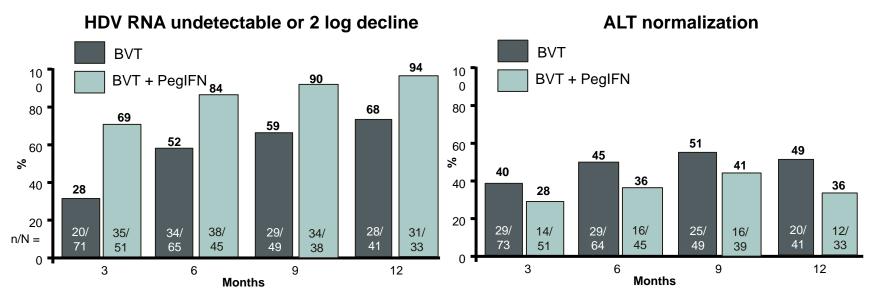

Therapy: Uses on HBsAg – Nucs not helpful (too late), anything that reduces HBsAg may be

Greater odds of anti-HDV relative to control populations

Stockdale. J Hepatol. 2020

Entry – Bulevirtide (Myrcludex B)

Blocks HBV entry by binding to NTCP receptor



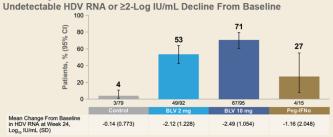
Modest HBV DNA decline (0.8 log), no effect on HBsAg but ALT normalization (55%) and greater effect in HDV
 Not likely enough on its own but maybe an adjunct therapy...

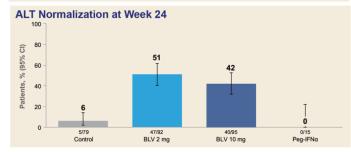
De Ledinghen. AASLD. 2021.

Early Outcomes With HDV

French early access program – bulevirtide 2 mg Sc +/- PegIFN 180 µg/wk - non-randomized

- AEs common but only 2 (BVT) and 3 (BVT + PegIFN D/C for AE
- Bile acid increase in all no itch


De Ledinghen. AASLD. 2021.


- Promising early data supportive of combination for virological effect
- ALT normalization even without virological effect

Bulevertide Phase 3 Data

281 with HBV/HDV coinfection randomized: BLV 2 mg, BLV 10 mg, PegIFN or placebo x 24w

Viral Response at Week 24



Combined Response at Week 24

Undetectable HDV RNA or ≥2-Log IU/mL Decline From Baseline and ALT Normalization

۰.

Very exciting to have something...still challenges – SC injection daily, long-term, bile acids

Wedemeyer. EASL. 2022.

Summary HDV

- Underdiagnosis
 - Screen HBsAg+ or selectively (high ALT but low HBV DNA or PWID or geography)
- Bulevirtide
 - Now approved in Europe alone or with PegIFN
 - Early antiviral and biochemical data promising
 - Long-term safety and tolerability require further follow-up
- Other strategies in development
 - HBsAg-targeting strategies
 - siRNA/ASO, NAP/STOP and possibly with immunotherapies Phase 2
 - HDV targeting therapies
 - Ionafarnib (+/- PegIFN–alpha/lambda) Phase 3

Summary for HBV Cure

Many virological targets

- Entry
- cccDNA formation/degradation/transcription
- Protein translation (RNAi/ASO)
- Capsid
- Secretion
- Fewer immunological targets...but more coming
 - Innate TLR, RIG-I
 - Adaptive Therapeutic vaccine, checkpoint inhibitors
- Combination likely required first attempts underwhelming but very informative
- Much more challenging than HCV...both scientifically and clinically (much higher bar, harder endpoints, more difficult to study)
- Interesting times ahead...