10[™] ANNUAL DIGESTIVE DISEASES: NEW ADVANCES

September 29–30, 2023 Hyatt Regency Jersey City On The Hudson

This activity is supported by educational grants from Cook Medical, CymaBay Therapeutics, Inc., Grifols, Mallinckrodt Pharmaceuticals, Olympus, and Salix Pharmaceuticals.

ANNENBERG CENTER FOR HEALTH SCIENCES AT EISENHOWER Imparting knowledge. Improving patient care

This activity is jointly provided by the Annenberg Center for Health Sciences at Eisenhower and Focus Medical Communications.

Hepatic Encephalopathy: New Innovations

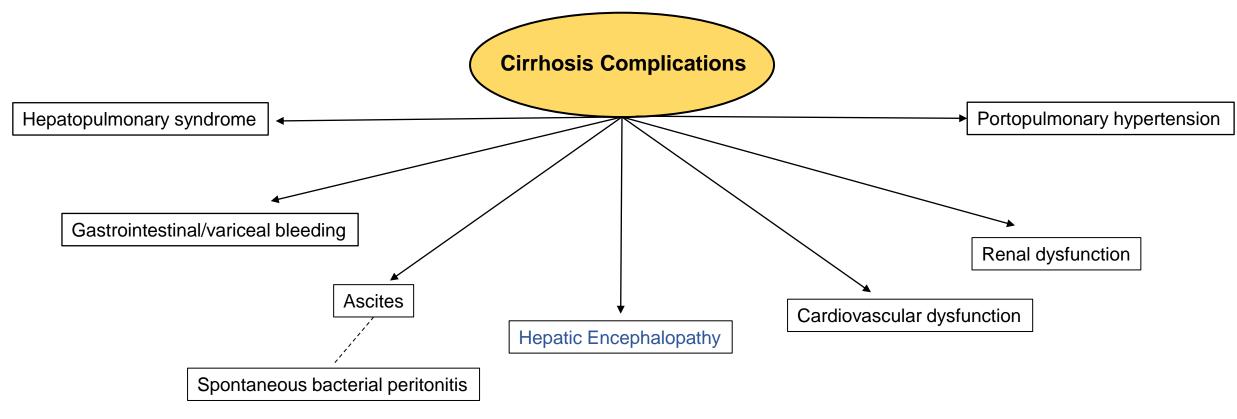
Sammy Saab, MD, MPH, AGAF, FACG, FAASLD

Medical Director, Pfleger Liver Institute Medical Director, Adult Liver Transplant Program at UCLA Chief, Transplant Hepatology at UCLA Head, Outcomes Research in Hepatology at UCLA Professor of Medicine and Surgery, David Geffen School of Medicine Adjunct Professor of Nursing, UCLA School of Nursing Professor (Hon), California Northstate University College of Medicine Associate Editor for Liver, Journal of Clinical Gastroenterology

Disclosures

- Sammy Saab, MD, MPH
 - Speakers Bureau: AbbVie, Gilead, Exelixis, Eisai, Intercept, Takeda, Mallinckrodt, Salix

Educational Objectives


- Review the epidemiology and clinical implications of hepatic encephalopathy (HE), and the role of the provider in treating HE in patients with chronic liver disease
- Discuss the approach and treatment options for medically refractory HE in patients
- Identify prevention and management strategies used in post-TIPS HE

Educational Objectives

- Review the epidemiology and clinical implications of hepatic encephalopathy (HE), and the role of the provider in treating HE in patients with chronic liver disease
- Discuss the approach and treatment options for medically refractory HE in patients
- Identify prevention and management strategies used in post-TIPS HE

Cirrhosis Is Associated With a Variety of Serious Complications

- Cirrhosis is associated with serious complications due to hepatic insufficiency and portal hypertension
- Hepatic encephalopathy is a primary complication of cirrhosis

James J, Liou IW. Med Clin North Am. 2015; Jawaro T et al. Ann Pharmacother. 2016; Liu A et al. World J Hepatol. 2015; Saab S. Int J Gen Med. 2015; Vilstrup H et al. Hepatology. 2014; Flamm SL. Am J Manag Care. 2018; Nadim MK et al. J Hepatol. 2016.

Hepatic Encephalopathy (HE) is not a Benign Condition

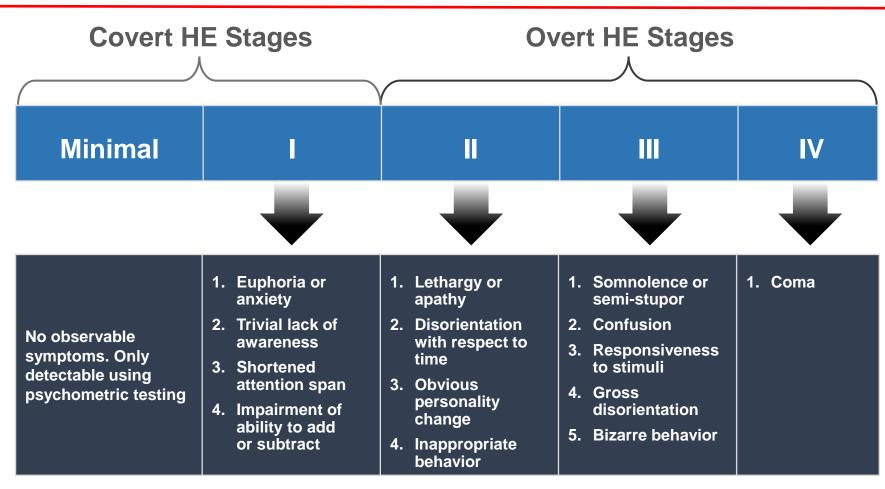
- Common
 - Up to 80% of cirrhosis patients will develop HE, ranging from minimal to overt

- Leaves a foot print
 - Repeated bouts can cause persistent cognitive deficits despite resolution of HE
 - Cognitive deficits that can persist after liver transplantation

- Selfish
 - Huge toll on care givers

- Destroys quality of life
 - Work, driving, social interaction

- Association with increased mortality
 - Grade 3 and 4 HE


- Revolving Door
 - Recurrence common, and readmission rate high
 - Increased health care utilization

Bajaj JS et al. *Clin Gastroenterol Hepatol.* 2017; Vilstrup H et al. *Hepatology.* 2014. Bajaj JS et al. *Aliment Pharmacol Ther.* 2019; Bass et al. *N Engl J Med.* 2010; Guevara et al. *Am J Gastroenterology.* 2009; Mas. *Digestion.* 2006; Bajaj et al. *Gastroenterology.* 2010; Mullen et al. *Semin Liver Dis.* 2007. Conn HO, Bircher J. *Medi-Ed Press* 1994; Riggio et al. *Clin Gastroenterol Hepatol.* 2011. Bajaj et al. *Gastroenterology.* 2010. Garcia-Martinez et al. *Liver Transpl.* 2011; Bajaj et al. *Am J Gastroenterol* 2011. Rakoski et al. *Hepatology* 2012; Nardelli S et al. *Dig Dis Sci* 2017.

Hepatic Encephalopathy Symptoms Can be Subtle; Should be Considered in Any Patient With Cirrhosis

Diagnosis of Overt Hepatic Encephalopathy

- Clinical recognition of the distinctive neurologic features of HE
- Knowledge that underlying cirrhosis is present
- Exclusion of all other etiologies of neurologic and/or metabolic abnormalities
- Identification of precipitating factors
- Grading systems to evaluate mental status
- Portal-systemic encephalopathy score to evaluate overall severity

HE = hepatic encephalopathy

Vilstrup H, et al. Hepatology 2014; Mullen KD. Semin Liver Dis 2007. Lawrence KR, Klee JA. Pharmacotherapy 2008.

Precipitating Factors for Hepatic Encephalopathy

Increased ammonia production

GI hemorrhage

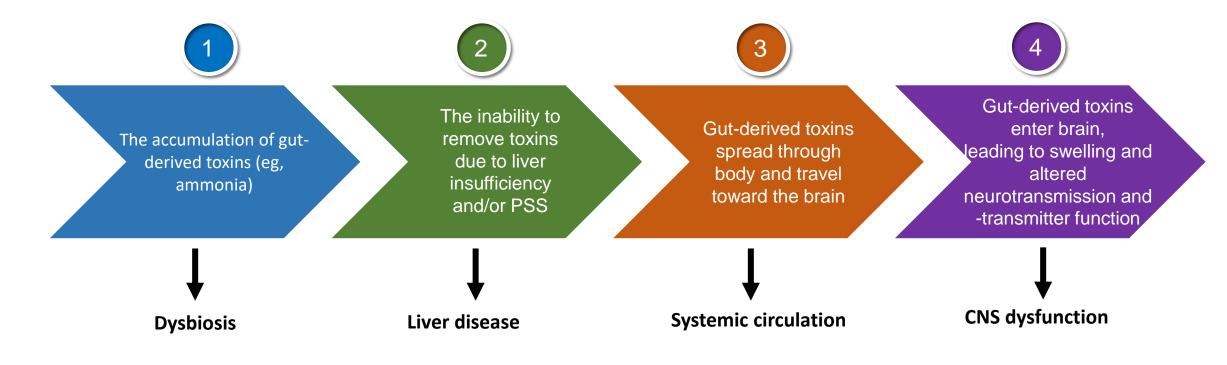
Excessive dietary protein

Blood transfusion

Electrolyte disorder (eg, hypokalemia)

Constipation

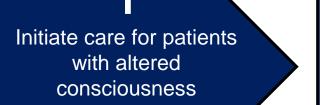
Portosystemic shunts


Spontaneous latrogenic (eg, TIPS)

Other

Drugs (eg, opioids, benzodiazepines) Infections (eg, SBP) Malignancy (eg, hepatoma) Dehydration Sarcopenia

HE is brain dysfunction, thought to involve the accumulation of gut-derived neurotoxins


HE is caused by liver insufficiency and/or PSS. The pathophysiology of HE is complex and is thought to involve accumulation of gut-derived toxins (eg, ammonia), inflammation, and oxidative stress

*NH*₃, ammonia; PSS, portal systemic shunting.

Vilstrup H, et al. *Hepatology*. 2014; Elwir S, et al. *J Clin Transl Hepatol*. 2017; DuPont HL. *Mayo Clin Proc*. 2015; Bajaj JS, et al. *Am J Physiol Gastrointest Liver Physiol*. 2012; Oikonomou T, et al. *World J Gastroenterol*. 2018; Basile AS, et al. *Pharmacol Rev*. 1991.

AASLD Recommends 4-Pronged Approach to Treating Overt Hepatic Encephalopathy

Seek and treat alternate causes of altered mental status

Identify and correct precipitating factors

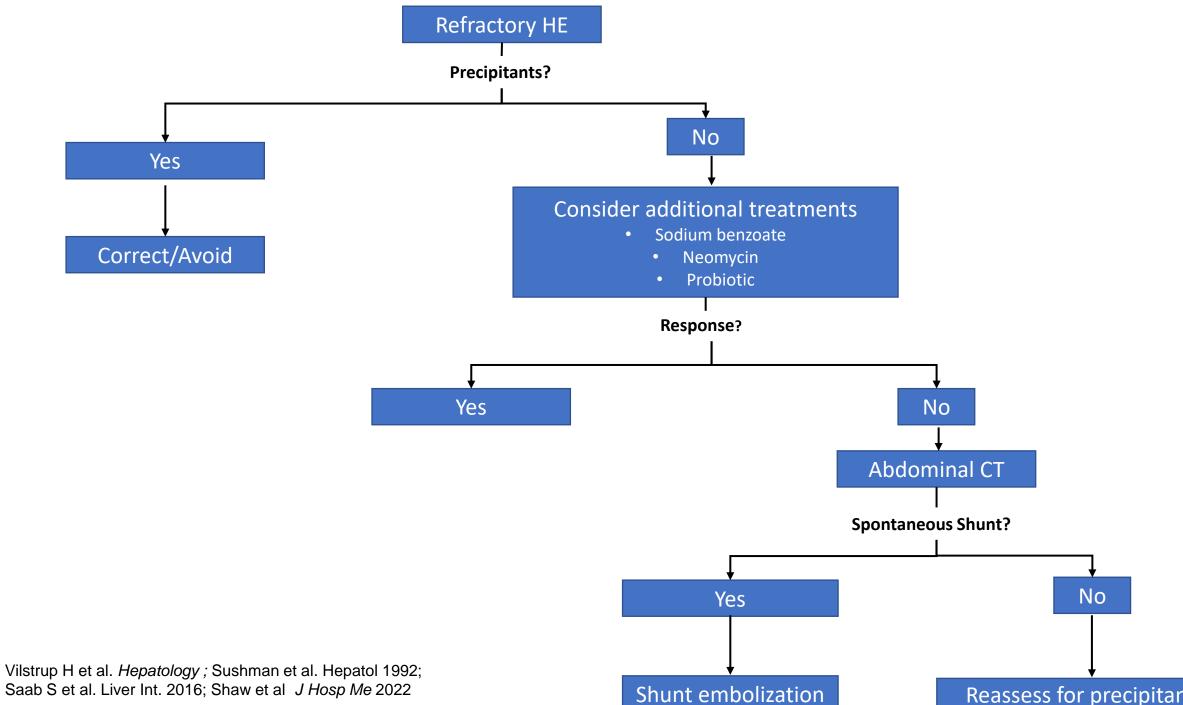
Begin empirical HE treatment

Initiate prior authorization process for discharge medications

FDA Approved Treatment Options and Goals for Hepatic Encephalopathy

Immediate goals:

- Provide supportive care
- Prior authorization for discharge medications upon admission
- Identification and removal of precipitating factors
- Reduction of nitrogenous load from gut
- Correction of electrolyte abnormalities

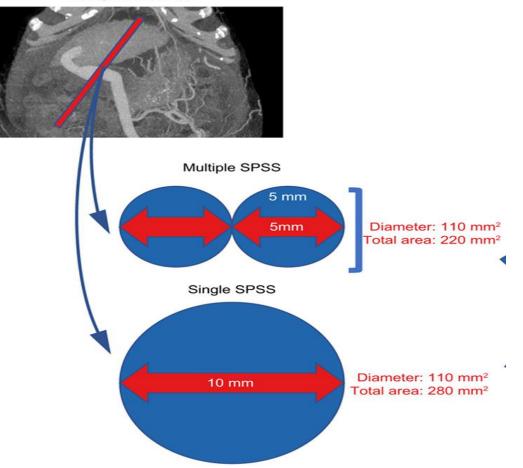

Long-term goals

- Control of potential precipitating factors
- Discharge on medications due to higher likelihood of recurrent encephalopathy
- Assessment of need for liver transplantation

Drug Name	Drug Class	Mechanism of Action
Lactulose	Poorly absorbed disaccharide	 Decreases blood ammonia concentration Promotes elimination of NH₃ Fermentation by bacteria acidify colon and prevent absorption Reduces urease-producing bacteria
Rifaximin	Non-aminoglycoside semi-synthetic, nonsystemic antibiotic	 Decreases blood ammonia concentration Broad spectrum antibiotic; results in a change in bowel flora May cause downregulation of intestinal glutaminase activity

Educational Objectives

- Review the epidemiology and clinical implications of hepatic encephalopathy (HE), and the role of the provider in treating HE in patients with chronic liver disease
- Discuss the approach and treatment options for medically refractory HE in patients
- Identify prevention and management strategies used in post-TIPS HE



Saab S et al. Liver Int. 2016; Shaw et al J Hosp Me 2022

Reassess for precipitants

Measuring Spontaneous Porto-Systemic Shunt (SPSS)

Spontaneous Porto-Systemic Shunt (SPSS) cross-section measured in CT scan at largest diameter

"MELD score was the strongest positive predictive factor of HE recurrence, with a cut-off of 11 used for patient selection to ensure safe embolisation without an increase in *de novo* development or aggravation of pre-existing varices, portal hypertensive gastropathy, or ascites".

Praktiknjo et al. J Hepatol 2020; EASL J Hepatol 2022

Presence of Spontaneous Portosystemic Shunt Associated with Hepatic Encephalopathy

Comparison Between the Two Groups of Patients Included in the Study

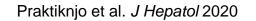
Demographics

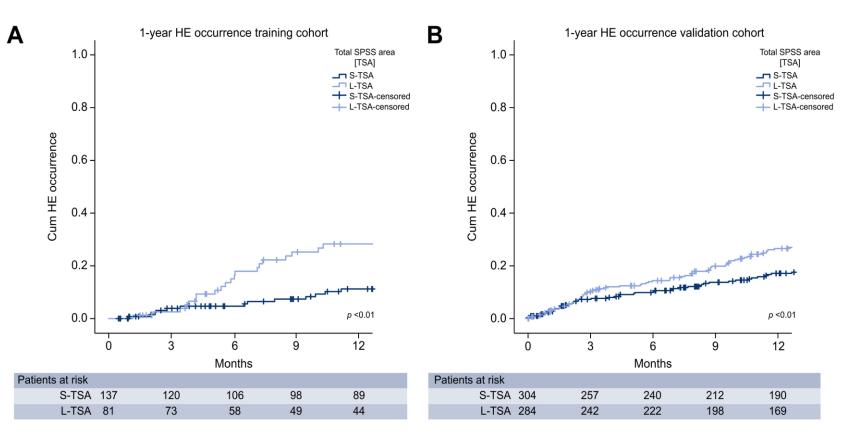
	Cases (n = 14)	Controls (n = 14)	p value
Age (y)	65.4 ± 9.3	65.1 ± 9.4	NS
Sex	9M/5F	12M/2F	NS
Etiology (alcohol/virus)	5/9	3/11	NS
Plasma sodium	135.4 ± 6.4	137.4 ± 3.2	NS
INR	1.42 ± 0.1	1.37 ± 0.3	NS
Creatinine (mg/dl)	0.98 ± 0.68	0.99 ± 0.78	NS
Bilirubin (mg/dl)	2.7 ± 1.5	2.1 ± 2.1	NS
Albumin (g/dl)	2.8 ± 0.7	2.9 ± 0.8	NS
MELD (score)	10.7 ± 4.0	10.2 ± 4.9	NS
Meant SD			

Mean± SD.

Riggio et al. *Hepatology*, 2005

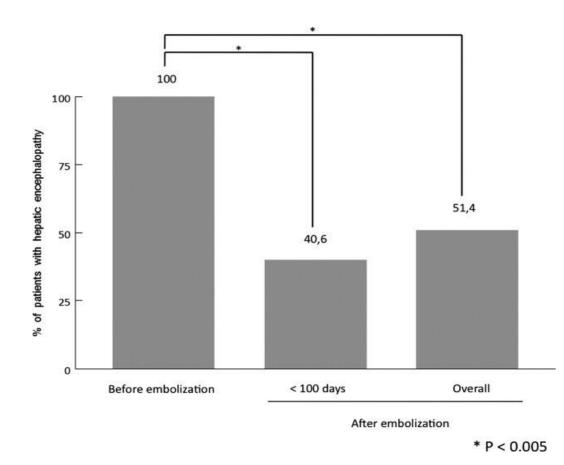
Prevalence of Spontaneous Portosystemic Shunts, Ascites, Large Varices, and Portal Gastropathy

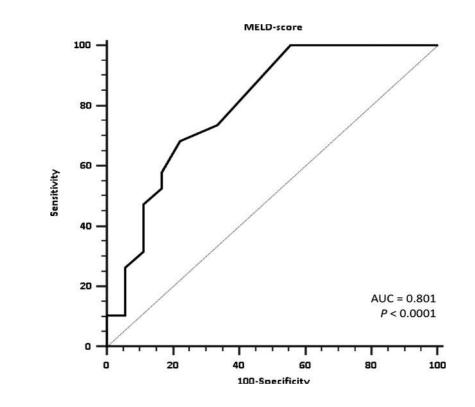

	Cases (n = 14)	Controls (n = 14)	p value
Shunts	10 (71%)	2 (14%)	.002
History of ascites	3(21%)	11 (78%)	.002
Large varices (F2-F3)	1 (7%)	6(42%)	.02
Presence of portal gastropathy	4(29%)	12 (86%)	.0007


Spontaneous Portosystemic Shunt Size Associated with Hepatic Encephalopathy Risk

Cumulative hazard function for the occurrence of overt hepatic encephalopathy (HE) in the training and validation cohorts

- Small total area (S-TSA) SPSS defined as <83 mm²
- Large total area (L-TSA) SPSS area defined as ≥83 mm²


SPSS, spontaneous portosystemic shunts



Embolization of Large Spontaneous Porto-Systemic Shunt (SPSS) for Refractory Hepatic Encephalopathy (HE)

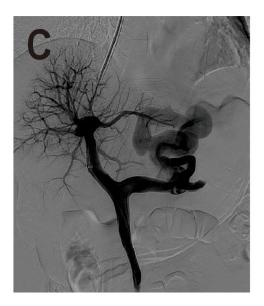
Short- and Long-term efficacy of SPSS-embolization in the occurrence of HE

Prediction of HE recurrence. Best cutoff point for the MELD score was 11 with a sensitivity and specificity of 68.4% and 77.6%, respectively.

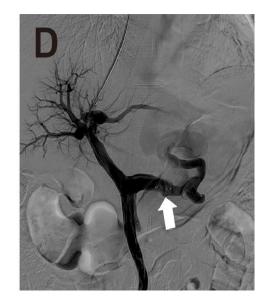
Retrograde Transvenous Obliteration for the Treatment of Hepatic Encephalopathy

A radiographic image of CARTO procedure demonstrating

- Black arrowhead ~ coil occlusion of efferent (draining) gastrorenal shunt
- White arrow ~ gelfoam filled gastrorenal shunt (white arrow)
- Black arrow ~ gelfoam filled gastric varices


The patient's West Haven score improved from 4 to 1 in 2 days post-CARTO and the ammonia level decreased from 257 to 46 μ g/dL

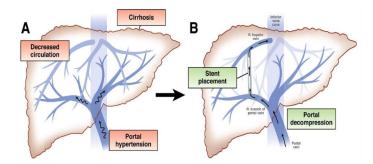
Potential Side Effects


- worsening of portal hypertension
- formation of additional shunts

Venography before and after Selective Embolization of the Splenic Vein

SMV venography before SESV

SMV venography after SESV


SV, splenic vein; SESV, selective embolization of the splenic vein

Zhang L, et al. Dig Liv Dis Sci. 2023

Educational Objectives

- Review the epidemiology and clinical implications of hepatic encephalopathy (HE), and the role of the provider in treating HE in patients with chronic liver disease
- Discuss the approach and treatment options for medically refractory HE in patients
- Identify prevention and management strategies used in post-TIPS HE

Utility of TIPS in Patients with Chronic Liver Disease

Table 2. Indications for transjugular intrahepatic portosystemic shunt placement

	AASLD (2009)	EASL (2018)	ACR-SIR-SPR (2017) ^a
Resistant cirrhotic ascites	T	I.	√
Secondary prevention of variceal hemorrhage	T	I	✓
Uncontrollable variceal hemorrhage ("rescue" therapy)	II-3	I	√
Recurrent hepatic hydrothorax	II-3	II-2	\checkmark
Portal hypertensive gastropathy, in those for whom beta-blockers fail	II-3	II-3	√
Budd-Chiari syndrome, in those who fail to improve with anticoagulation	II-3	Not addressed	√
Hepatorenal syndrome	Further research needed	II-2 for type 2, further research needed	✓
Hepatopulmonary syndrome	Not recommended	Further research needed	✓
Decompression of portosystemic collaterals prior to abdominal surgical procedures	Not addressed	Not addressed	√
AASLD, American Association for the Study of Liver D		Radiology; EASL, European Association for the Study	of the Liver; SIR, Society of

Interventional Radiology; SPR, Society for Pediatric Radiology.

^aACR-SIR-SPR guidelines do not report levels of evidence.

From AASLD (ref. [1]), EASL (ref. [2]), and ACR-SIR-SPR (ref. [3]).

 Table 3. Relative and absolute contraindications to transjugular intrahepatic portosystemic shunt placement

Contraindications				
Relative	Absolute			
Advanced age	Severe or poorly controlled HE			
Remote history of HE	Severe liver failure			
Elevated MELD	Heart failure or severe cardiac valvular insufficiency			
Elevated right or left heart pressures	Marked pulmonary arterial hypertension			
Moderate portopulmonary hypertension	Severe portopulmonary hypertension			
Extensive primary or metastatic hepatic malignancy	Unrelieved biliary obstruction			
Severe uncorrectable coagulopathy	Active systemic infection or sepsis			
Severe uncorrectable thrombocytopenia				
HE, hepatic encephalopathy; MELD, Model for end-stage liver disease.				

Saab S. et al. Am J Gastroenterol 2020; Gonzalez JG. AASLD Liver Fellow Network. https://www.aasld.org/liver-fellow-network . Accessed 9/2/23

Predictors of Post-TIPS Hepatic Encephalopathy

Predictors of Post-TIPS Hepatic Encephalopathy

Occurs in up to 50% of patients after TIPS

Mechanism of Post-TIPS Hepatic Encephalopathy

First pass hepatic clearance Increase splanchnic blood flow Upregulation of intestinal glutaminase

Technical Factors

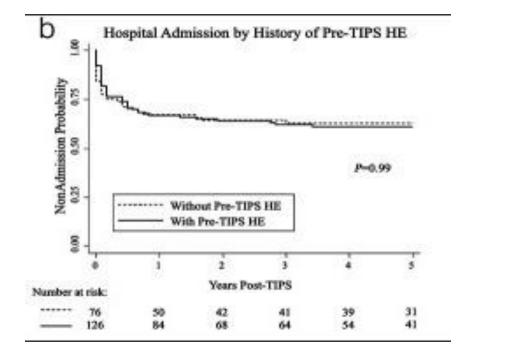
Diameter of the TIPS

Host Factors

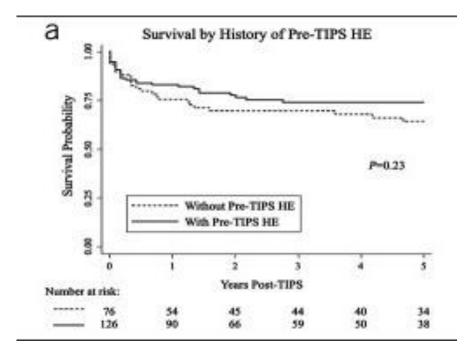
- poorly treated HE
- Advanced age (>65)
- Sarcopenia
- Liver insufficiency (MELD >22, CP > 10)
- Renal insufficiency
- Hyponatremia
- Hypoalbuminemia
- Presence of shunting

Management of Post-TIPS Hepatic Encephalopathy

Prevention Lactulose and/or rifaximin used to treat and prevent ٠ Predictive factors recurrence of hepatic encephalopathy (HE) TIPS size, Psg gradient Variceal embolization AASLD and EASL **do not** recommend primary Medical treatment pharmacologic HE prophylaxis with lactulose or rifaximin Precipitating factors Medical management Endovascular Shunt reduction

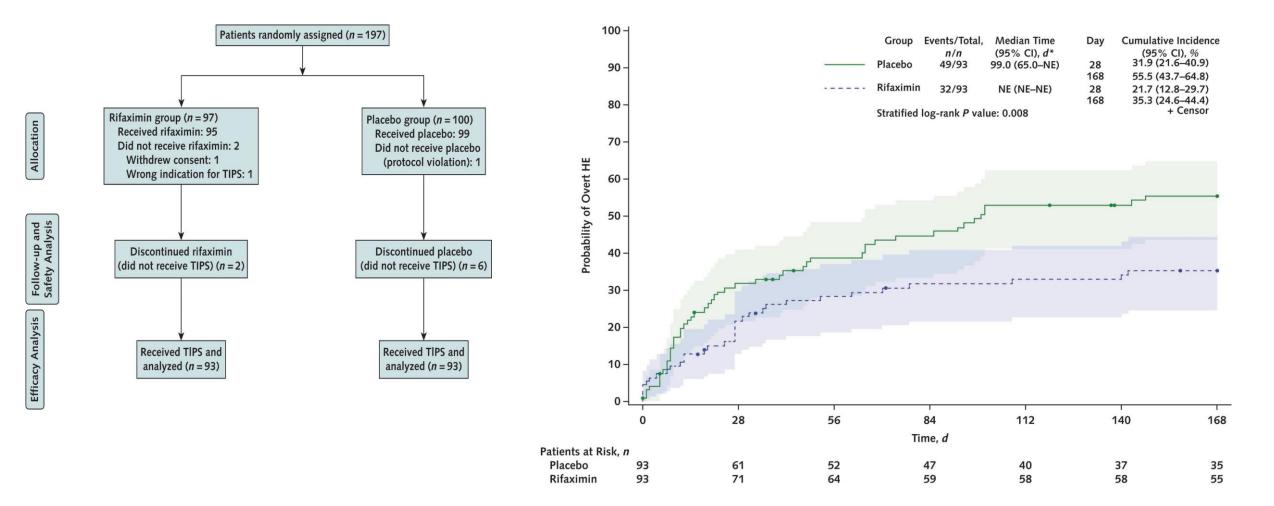

Pereira K C et al. Liver International 2015; Vilstrup H et al. Hepatology. 2014; EASL J Hepatol 2022

Shunt occlusion


SPSS management

Pre-TIPS Hepatic Encephalopathy Not Absolute Contraindication for TIPS

Five-year hospital admission for HE after TIPS placement in patients with and without pre-TIPS HE


Five-year survival after TIPS placement in patients with and without pre-TIPS HE

HE, hepatic encephalopathy; ICU, intensive care unit; TIPS, transjugular intrahepatic portosystemic shunt.

Saab S et al. Clin Transl Gastroenterol 2021

Pre-TIPS Use of Rifaxamin may Reduce Risk of Post-TIPS Hepatic Encephalopathy

Conclusions

- Hepatic encephalopathy (HE) is an important complication of cirrhosis, and should not be considered a benign problem
- Early recognition and treatment of HE essential for improved patient related outcomes
- Shunting is an important cause of HE
- Although refractory HE is uncommon, a systematic approach will lead to best outcomes.